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Scalar-Tensor Theory with Torsion and Stellar
Structure

Ji-Zhong Xu1

Received May 24, 1997

The modified Lane±Emden equation with an additional force, based on the
scalar±tensor theory with torsion, is found. The influence of an additional
intermediate-range force on stellar structure is investigated.

1. INTRODUCTION

Some time ago O’ Hanlon (1972) suggested that the existence of an

additional force is possible, namely, that the Newtonian gravitational potential

is modified as

U (r) 5 2
MG `

r
(1 1 m e 2 l r) (1)

where m and l 2 1 are the strength and the range of the additional force,
respectively. Although the restriction on the additional force given by experi-

ment laboratory is | m | # 10 2 3 , 10 2 4 (Stubbs et al., 1987), astrophysical

and cosmological analysis shows the possibility of larger m (Frieman et
al., 1991).

In our previous work (Xu et al., 1991a,b), the additional force is
explained as a manifestation of the torsion in the Riemann±Cartan spacetime

U4 with the aid of a scalar-tensor theory with torsion suggested by us. In

this paper, we discuss the influence of the additional force on stellar structure

based the scalar-tensor theory with torsion. In the next section, we briefly

review the scalar-tensor model with torsion and the field equation.
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2. MODEL AND FIELD EQUATION

In the scalar-tensor model with torsion, the variational principle is (Xu
et al., 1991a,b)

d # [ w R 1 kL 1 e ( w 2 w 0)
2] ! 2 g d 4x 5 0 (2)

where k is a constant, e is a coupling parameter, w is the scalar function, w 0

is the constant background value for the scalar-field w , and L is the Lagrangian

density, which clearly does not include w , for matter. R is the curvature scalar

in the Riemann±Cartan spacetime U4 and can be written as follows (Xu, 1989):

R 5 R ({x}) 1 g ijT l
kjK

k
il 2

4

! 2 g
[ ! 2 gS ij

j ],i (3)

In which R ({x}) is the curvature scalar in the Riemann spacetime V4, namely,

the curvature scalar with respect to the Christoffel symbol. The comma used

as an index indicates the usual derivative. Here

K k
ij 5 2 S k

ij 1 S k
ij 1 S k

ji (4)

is the contorsion tensor and

T k
ij 5 S k

ij 1 d k
i S

l
jl 2 d k

j S
l
il (5)

is the modified torsion tensor. S k
ij is the torsion tensor and is defined as

S k
ij 5 1±2 ( G k

ij 2 G k
ji) (6)

where G k
ij is the connection coefficient in U 4. Taking the torsion tensor as

S k
ij 5

b

2
w 2 1( w , j d k

i 2 w , i d k
j ) (7)

where b is a parameter which is independent of the spacetime point, we find

that equation (3) becomes

R 5 R ({x}) 2 v w 2 2 w ,k w , k 1
6b

! 2 g
w 2 1( ! 2 g w ,k), k (8)

In which v 5 6b (b 1 1) is a new parameter. Substituting (8) into (2) and

omitting the divergent term, we get

d # [ w R ({x}) 2 v w 2 1 w ,k w , k 1 e ( w 2 w 0)
2 1 kL] ! 2 g d 4x 5 0 (9)

By varying gij and w in equation (9), respectively, we find the field

equations
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Gij ({x}) 5 Rij({x}) 2 1±2 gijR ({x})

5 w 2 1( w , i | j 2 gij N w )

1 v w 2 2( w , i w , j 2 1±2 gij w ,k w , k) 1 1±2 e gij w 2 1( w 2 w 0)
2 1 1±2 k w 2 1Tij (10)

N w 1
2 e w 0

2 v 1 3
( w 2 w 0) 2

k

2(2 v 1 3)
T 5 0 (12)

where Rij({x}) is the Ricci tensor with respect to the Christoffel symbol.

N w 5 gij w ,i | j. The vertical bar denotes the covariant derivative using only the

Christoffel symbol of the metric. According to the Bianchi identity, the
Einstein tensor G ij({x}) satisfies the identity

G ij({x})j 5 0 (12)

The energy-momentum tensor of matter Tij is defined as

Tij 5 2
2

! 2 g

- ( ! 2 gL)

- g ij (13)

T 5 gijTij. Using equations (10)±(12), we find that

T
ij
| j 5 0 (14)

3. THE WEAK-FIELD LINEAR APPROXIMATE SOLUTIONS

For a weak field, we write

gij 5 h ij 1 hij, w 5 w 0 1 j (15)

where h ij is the Minkowskian metric tensor. hij and j are small perturbations
and they are computed to the linear first approximation only. Therefore,

substituting (15) into (11), we get

2 ¹ 2 j 1
1

c 2

- 2 j
- t 2 1 l 2 j 5 1±2 k m T (16)

in which

l 2 5
2 e w 0

2 v 1 3
and m 5

1

2 v 1 3

The retarded-time solution of equation (10) is

j 5
k m
8 p # T

r
e 2 l r d 3x (17)

where T is to be evaluated at retarded time. Substituting (15) into (10) and

introducing the coordinate condition
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(hij 2 1±2 h ijh), k h jk 5 w 2 1
0 j , i (18)

we find that equation (10) becomes

2 ¹ 2 a ij 1
1

c 2

- 2 a ij

- t 2 5 2 k w 2 1
0 Tij (19)

where

a ij 5 hij 2 1±2 h ijh 2 h ij w 2 1
0 h (20)

The retarded-time solution of equation (19) is

a ij 5 2
k w 2 1

0

4 p # Tij

r
d 3x (21)

From equations (17), (20), and (21), we get

hij 5 a ij 2
1

2
h ij a 2 h ij w 2 1

0 j

5
a w 2 1

0

4 p F 2 # Tij

r
d 3x 1

1

2
h ij # T

r
(1 2 m e 2 l r) d 3x G (22)

For a stationary mass point of mass M, from equations (15) and (22),

we obtain the weak-field approximate solutions

g44 5 1 1
2U (r)

c 2 (23)

g a a 5 2 1 2
kMc2 w 2 1

0

8 p r
(1 2 m e 2 l r), a 5 1, 2, 3 (24)

where

U (r) 5 2
kMc4 w 2 1

0

16 p r
(1 1 m e 2 l r) (25)

Putting k 5 16 p /c 4 and with w 2 1
0 5 G ` , the Newtonian constant of gravitation

for r ® ` , we find that equation (25) becomes equation (1).

4. MODIFIED LANE± EMDEN EQUATION AND STELLAR
STRUCTURE

For a static, spherically symmetrical perfect fluid with density r (r), low

pressure p (r), and radius R, the nonzero components of the energy-momentum

tensor are
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T a
b 5 2 p (r) d a

b , T 4
4 5 r (r)c 2 ( a , b 5 1, 2, 3) (26)

Substituting (26) into (14), we obtain the equilibrium equation

p, a 1 1±2 ( p 1 r c 2)h44, a 5 0 (27)

Substituting (20) into (27), we get

1

p 1 r c 2 ¹ p 5 2 1±2 ( ¹ a 44 2 1±2 h 44 ¹ a 2 h 44 w 2 1
0 ¹ j ) (28)

Here ¹ is the three-dimensional Laplacian operator. Taking the divergence
for the above equation, we find

¹ x 1 1

p 1 r c 2 ¹ p 2 5 2
1

2
¹ 2 a 44 1

1

4
h 44 ¹ 2 a 1

1

2
h 44 w 2 1

0 ¹ 2 j (29)

Substituting the static equations corresponding to (16) and (19) into (29),
taking account of the low-pressure approximation p , , r c 2, and putting

k 5 16 p /c 4 and w 2 1
0 5 G ` , we get

1

r 2

d

dr 1 r 2 1

r
d

dr
p 2 5 2 4 p G ` r (1 1 m ) 1

1

2
G ` c 2 l 2 j (30)

We assume that the relationship between the pressure p and the density

r is described by a polytropic equation

p 5 K r 1 1 1/N (31)

where K is a constant, and N is the polytropic index. Substituting (31) into

(30) and introducing new variables

u 5 1 r
r 0 2

1/N

(32)

x 5 F 4 p G `

K (N 1 1)
r 1 2 1/N

0 G
1/2

r 5
r

b
(33)

where

b 5 F K (N 1 1)

4 p G `
r (1/N) 2 1

0 G
1/2

(34)

we obtain the modified Lane±Emden equation
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1

x 2

d

dx 1 x 2 d u
dx 2 5 2 (1 1 m ) u N 1

c 2 l 2

8 p r 0

j (35)

where r 0 is the density at the center. The boundary conditions of equation

(35) at the center are

u (0) 5 1,
d u
dx

(0) 5 0 (36)

In the absence of the additional force, then m 5 0 and j 5 0, and equation

(35) becomes the Lane±Emden equation in the Newtonian theory.

From equation (32), the static field equation corresponding to (16) may

be rewritten as

2
1

b 2x 2

d

dx 1 x 2 d j
dx 2 1 l 2 j 5

8 p
c 2 m r 0 u N (37)

Substituting (35) into (37), we get

F 1

x 2

d

dx 1 x 2 d

dx 2 2 b 2 l 2 G F 1

x 2

d

dx 1 x 2 d u
dx 2 1 (1 1 m ) u N G

5 2 m l 2 b 2 u N (38)

we discuss two cases as follows:

Case 1. N 5 0: We discuss a static uniform star with density r 0 and
radius R. In this case, equation (37) has the exterior solution satisfying the

continuity condition at the stellar surface

j (x) 5
8 p m r 0

l 3c 2 b x
[ l b x0 cosh( l b x0) 2 sinh( l b x0)]e

2 l b x (39)

and the interior solution

j (x) 5
8 p m r 0

l 2c 2 F 1 2
1

l b x
e 2 l b x0(1 1 l b x0) sinh( l b x) G (40)

in which x0 5 b 2 1 R. From equations (35) and (40), the Lane±Emden equation

for N 5 0 is written as

1

x 2

d

dx 1 x 2 d u
dx 2 1 1 5 2

m
l b x

(1 1 l b x0)e
2 l b x0 sinh( l b x) (41)

This equation has the solution satisfying the conditions (36)
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u (x) 5 1 2
1

6
x2 1

m
l 2 b 2 (1 1 l b x0)e

2 l b x0 F 1 2
1

l b x
sinh( l b x) G (42)

From the boundary condition at the stellar surface u (x0) 5 0, we get that

1 2
1

6
x 2

0 1
m

l 2 b 2 (1 1 l b x0)e
2 l b x0 F 1 2

1

l b x0

sinh( l b x0) G 5 0 (43)

For the intermediate-range additional force, we may take the approximation

l R . . 1 and obtain the expression of the stellar radius

R 5 RN 1 1 2
m

2 l 2 b 2 2
1/2

’ RN 1 1 2
m

4 l 2 b 2 2 (44)

in which RN 5 ! 6 b is the stellar radius in the Newtonian theory. The

fractional change in radius, from equation (44), is

d R

RN

5
R 2 RN

RN

5 2
m

4 l 2 b 2 (45)

Case 2. N 5 1: Equation (38) is written as

F 1

x 2

d

dx 1 x 2 d

dx 2 2 l 2 b 2 G F 1

x 2

d

dx 1 x 2 d u
dx 2 1 (1 1 m ) u G 5 2 m l 2 b 2 u (46)

Equation (46) has the solution satisfying the boundary conditions (36)

u (x) 5
sin( v x)

v x
1 C V 1 sinh( V x)

V x
2

sin( v x)

V x 2 (47)

where

v 2 5 1±2 {1 1 m 2 l 2 b 2 1 [(1 1 m 2 l 2 b 2)2 1 4 l 2 b 2]1/2}
(48)

V 2 5 2 1±2 {1 1 m 2 l 2 b 2)2 2 [(1 1 m 2 l 2 b 2)2 1 4 l 2 b 2]1/2}

The constant C is determined by the zero-pressure boundary condition u (x0) 5
0 at the stellar surface

C 5
sin( v x0)

V sin( v x0) 2 v sinh( V x0)
(49)

Substituting (47) into (35), we obtain the interior solution of equation (37)

j 5
8 p r 0

l 2c 2x F (C V 2 1) v m
sin( v x)

v
1 C V m sinh( V x) G (50)
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where

v m 5 v 2 2 1 2 m V m 5 V 2 1 1 1 m (51)

The exterior solution of equation (37) may be written as

j 5
8 p r 0B

l 2c 2x
e 2 l b x (52)

where B is an integral constant. Using the continuity of j and d j /dx at x0,

we obtain the equation determining x0 as follows:

l b ( v 2 1 V 2) 1 v m v cot( v x0) 1 V m V coth( V x0) 5 0 (53)

For the intermediate-range additional force, taking the approximation

l R . . 1, the expression of the stellar radius is written as

R ’ b p 1 1 2
m

2 l 2 b 2 2 (54)

Thus, the fractional change in radius is

d R

RN

5 2
m

2 l 2 b 2 (55)

This result is the same as found by Glass et al. (1989) in another way.
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